
Visualizing Software Classes with Geon Diagrams in
Second Life - A Botched Attempt

Paul Oppenheim
paul@pauloppenheim.com

INTRODUCTION
There are two related problems:

Language for Algorithm Visualization
There’s no easy way for a coder to visually describe soft-
ware in software. The closest thing is graphviz[1], which
isn’t an inherently visual or intuitive language[2]. The
way to solve this would be to find the fundamental visual
elements of software diagrams, then write an intuitive lan-
guage to generate them. Ideally untrained readers would
be able to easily read either the source code or the result-
ing diagram, perhaps with a language similar to “ASCII
art”.

Validating Software Visualizations
Very few software visualization techniques have been val-
idated[3]. Because of this, there is no consensus about
what the fundamental visual elements of software dia-
grams are. One technique that has been validated for vi-
sualizing the semantic content of UML diagrams is using
“geon diagrams”[4] based on Biederman’s principles of
structural cognition[5].

In the interest of developing a base from which to eventu-
ally create a software visualization language, there should
be a way to create known-effective diagrams from existing
code. These diagrams could then be modified and used in
experiments to gauge their efficacy.

Second Life[6] is a 3D virtual world, primarily made from
“primitives”[7] which almost exactly correspond to the geons
in geon diagrams, and as such would be a good environment
to reproduce them. Further, Second Life is attractive as an
environment because of the ability to easily share the dia-
grams and talk about them, my familiarity with it[8], and
because it would be rather cool.

RELATED WORK
Software Visualization is an entire field unto itself, albeit
a smaller one. There’s a catalog of many software visual-

izations, papers, and books related to the subject at algo-
viz.org[9]. Of only two books on the subject, one asks the
question at the core of software visualization:

. . . the fact is that at present there is a shortage of soft-
ware visualizations explicitly built around cognitive rep-
resentations. And outside the domain of code, there
is not even much idea what a cognitive representation
would look like.[10]

There is a body of work around visualizing graphs and net-
works for mathematics[11], part of which is implemented in
the graphviz distribution. A group of researchers in the Ob-
ject Management Group (OMG)[12] created Unified Mod-
eling Language (UML)[13], a set of techniques for making
several types of node-link graphs with additional annotations
specifically for software visualization. The question remains
whether extensions such as UML are effective, and if there
are other techniques which could boost the efficacy of node-
link diagrams.

The Diehl book suggested that there is an improved model
based on approaching the problem from the angle of visual
cognition, the geon diagram[14], written about by Irani and
Ware in several papers[15]. Controlled experiments show
the geon diagram to be more efficient than a semantically
equivalent UML diagram[16]. Missing with the papers on
geon diagrams is an implementation for others to use, to it-
erate on, and to run other experiments with. I imagine that
this would be very important for others to efficiently carry
this line of research forward.

METHODS
This is where there is obvious weakness in my work - I spent
so much time researching, deciding which path would be
effective, and learning and manipulating existing software
that I didn’t get far with the implementation. The intended
techniques and algorithms are as follows.

The original plan for geon diagram generation in Second
Life involves

• parsing description of UML diagram

• generating geon layout (in this case, simple force-directed
with straight connecting links)

• generating LSL (Second Life scripting code) capable of
rezzing the diagram

1



Prof. Agrawala gave comments on my in-class presenta-
tion suggesting that there need to be more “apples-to-apples”
comparisons of geon diagrams and UML. As such, a more
one-attribute-at-a-time modification from UML to geon is
required in the visualization. As the geon diagram compares
to the UML class diagram, there must be a way to easily
generate

• Object-oriented source code

• equivalent UML class diagram

• equivalent geon diagram

• alternate diagrams for controlled experimentation

Because of the last requirement the system needs to be able
to generate UML diagrams and UML-like diagrams as well
as geon diagrams and geon-like diagrams.

Regardless of what I should have done, there are several
components required:

code there needs to be a set of object-oriented code samples
which describe several multi-class algorithms, ideally of
varying complexity to create various levels of class dia-
gram complexity. As my work outside the scope of this
project is primarily in C++, this would be the ideal lan-
guage to work with.

parsed code the code needs to be parsed into an AST from
which relationships can be discovered. C++ is notoriously
hard to parse, as can be seen by the Elkhound[17] and
FOG[18] parsers.

relationships relationships between classes need to be used
to infer the UML semantics.

UML semantics The information composing the UML class
diagram, needed to layout the diagram. Class names, in-
heritance structure, dependencies, and other attributes are
extracted from the code relationships.

UML intermediate form a text description of the seman-
tics of the diagram. The OMG has created an XML-based
format for UML known as XMI which is suitable for this
purpose[19]. This is useful as an interchange between
several tools which may not be able generate UML se-
mantics, but may be able to render them.

UML intermediate form parser a tool to take the UML in-
termediate form and turn it back into UML semantics.

Layout software software which can turn UML semantics
into appropriately sized and positioned nodes and edges.

Drawing software software which can take a layout and
render it using a set of given parameters.

In the original plan, many parts of this were handled by ex-
isting open source software:

• code - written sample, several open source projects

• parsed code, relationships - bouml [20] (C++ plugout)

• UML semantics, UML intermediate form - bouml

• UML intermediate form parser - python xmiparser[21]

• Drawing software - Second Life

This arrangement leaves the Layout software to be written.
It took a while to get to this stack, but when I finally did,
I had difficulty in making xmiparser parse bouml’s output.
Initial LSL exploration indicated that with decent choice of
node objects, there shouldn’t be much difficulty in rezzing
them at appropriate locations.

Several other stacks were also attempted:

• parsed code, relationships - doxygen[22]

• Drawing software - Second Life

Leaving UML semantics and Layout software to be written.
UML intermediate form serialization and parsing could be
skipped in this case, as the software could be written as part
of doxygen. This path was abandoned because of the dif-
ficulty of working with the doxygen source, and the neces-
sity of inferring UML semantics without assistance. UML is
a significant standard, and even inferring class diagram se-
mantics is not a simple undertaking, especially in a codebase
as complex as doxygen.

A stack giving optimal flexibility but highest implementation
complexity would involve:

• parsed code - elkhound / elsa

• Drawing software - Second Life

This would further involve inferring relationships, but would
require relatively simple code to operate on a parsed AST.
This could simplify implementation at higher levels.

RESULTS
Unfortunately, the only geon diagrams made were hand-built
replicas of the diagrams in the research paper in Second Life:

I learned a tremendous amount about software visualization
in the process of researching the original topic. That will aid

2



my future professional work. I consider that a reasonable
result as any.

DISCUSSION
Ideally from my research it can at least be seen

• Research shows software visualizations can be effective,
some more than others

• There need to be more tools for practical research on soft-
ware visualization

• Writing these tools may be larger than the scope of a one-
month final project in CS294-10 taught by Prof. Agrawala,
especially if you already have a full-time job in the soft-
ware industry

FUTURE WORK
This system still needs to be written. I feel that once the
more mundane technical and integration issues are solved,
there is a potential to make diagrams sufficient for quantita-
tive testing. The variations in diagrams could be shown us-
ing online surveys and large audiences to gauge the cognitive
appropriateness of the myriad combinations of graph proper-
ties available. If designed correctly, this research could pro-
vide results similar to other quantitative perception research,
such as the canonical views research by Blanz et al.[23], or
the power functions of perceptual magnitude by Stevens[24].

REFERENCES
1. graphviz - http://www.graphviz.org/About.php

2. graphviz example to demonstrate non-intuitiveness -
http://www.graphviz.org/Gallery/directed/datastruct.gv.txt

3. Stephan Diehl. ”Software Visualization”. Springer,
2007. p. 157.

4. See [3], p. 60.

5. I. Biederman, ”Recognition-by-Components: A Theory
of Human Image Understanding,” Psychological
Review, Vol. 94, No. 2, 1987, pp. 115-147.

6. Second Life http://secondlife.com/

7. Second Life Primitives
http://wiki.secondlife.com/wiki/Primitive

8. Poppy Linden
http://wiki.secondlife.com/wiki/User:Poppy Linden

9. Algoviz software visualization catalog
http://wiki.algoviz.org/AlgovizWiki/Catalog

10. John T. Stasko, John B. Domingue, Marc H. Brown and
Blaine A. Price. ”Software Visualization.” MIT Press,
1998.

11. EMDEN R. GANSNER and STEPHEN C. NORTH.
”An open graph visualization system and its
applications to software engineering.”
SOFTWAREPRACTICE AND EXPERIENCE. John
Wiley & Sons, Ltd. 1999.

12. OMG http://www.omg.org/

13. UML http://www.uml.org/

14. see [4]

15. Pourang Irani and Colin Ware. ”Diagrams Based on
Structural Object Perception.” Proc. Advanced Visual
Interfaces AVI2000, Palermo, Italy, May 2000, pp.
61-67

16. Pourang Irani, Colin Ware, and Maureen Tingley.
”Using Perceptual Syntax to Enhance Semantic
Content in Diagrams.” IEEE Computer Graphics &
Applications, 21(5):76-84, 2001.

17. Elkhound: A GLR Parser Generator and Elsa: An
Elkhound-based C++ Parser -
http://scottmcpeak.com/elkhound/

18. Edward D. Willink. Meta-Compilation for C++. PhD
Thesis, Computer Science Research Group, University
of Surrey, June 2001.
http://www.computing.surrey.ac.uk/Research/CSRG/fog/FogThesis.pdf

19. MOF 2.0/XMI Mapping. Object Management Group,
2007. http://www.omg.org/spec/XMI/2.1.1/

20. bouml http://bouml.free.fr/

21. xmiparser http://pypi.python.org/pypi/xmiparser/1.4
part of ArchGenXML
http://plone.org/products/archgenxml

22. doxygen http://www.stack.nl/∼dimitri/doxygen/

23. Volker Blanz, Michael J. Tarr, and Heinrich H. Blthoff.
”What object attributes determine canonical views?”
Perception, 28 575-600, 1998.

24. Stevens, S. S. The psychophysics of sensory function.
American Scientist. Vol 48, 1960, 226-253.

25.
http://media.tumblr.com/tumblr l20epdB8Nz1qb25dg.jpg

3

http://www.graphviz.org/About.php
http://www.graphviz.org/Gallery/directed/datastruct.gv.txt
http://secondlife.com/
http://wiki.secondlife.com/wiki/Primitive
http://wiki.secondlife.com/wiki/User:Poppy_Linden
http://wiki.algoviz.org/AlgovizWiki/Catalog
http://www.omg.org/
http://www.uml.org/
http://scottmcpeak.com/elkhound/
http://www.computing.surrey.ac.uk/Research/CSRG/fog/FogThesis.pdf
http://www.omg.org/spec/XMI/2.1.1/
http://bouml.free.fr/
http://pypi.python.org/pypi/xmiparser/1.4
http://plone.org/products/archgenxml
http://www.stack.nl/~dimitri/doxygen/
http://media.tumblr.com/tumblr_l20epdB8Nz1qb25dg.jpg

	Introduction
	Related Work
	Methods
	Results
	Discussion
	Future Work
	REFERENCES 

